Development of biocompatible synthetic extracellular matrices for tissue engineering.
نویسندگان
چکیده
Tissue engineering may provide an alternative to organ and tissue transplantation, both of which suffer from a limitation of supply. Cell transplantation using biodegradable synthetic extracellular matrices offers the possibility of creating completely natural new tissues and so replacing lost or malfunctioning organs or tissues. Synthetic extracellular matrices fabricated from biocompatible, biodegradable polymers play an important role in the formation of functional new tissue from transplanted cells. They provide a temporary scaffolding to guide new tissue growth and organization, and may provide specific signals intended to retain tissue-specific gene expression.
منابع مشابه
Tissue Engineering: A Biological Solution for Tissue Damage, Loss or End Stage Organ Failure
In recent years the science of tissue engineering has emerged as a powerful tool for the development of a novel set of tissue replacement parts and technologies. Recent advances in the fields of biomaterials, stem cell technologies, growth factor field and biomimetics have created a unique set of opportunities for investigators to fabricate lab-grown tissues from combination of extracellular ma...
متن کاملApplication of elastin-mimetic recombinant proteins in chemotherapeutics delivery, cellular engineering, and regenerative medicine
With the remarkable increase in the fields of biomedical engineering and regenerative medicine, biomaterial design has become an indispensable approach for developing the biocompatible carriers for drug or gene cargo and extracellular matrix (ECM) for cell survival, proliferation and differentiation. Native ECM materials derived from animal tissues were believed to be the best choices for tissu...
متن کاملSynthetic extracellular matrices for tissue engineering and regeneration.
The need for replacement tissues or organs requires a tissue supply that cannot be satisfied by the donor supply. The tissue engineering and regeneration field is focused on the development of biological tissue and organ substitutes and may provide functional tissues to restore, maintain, or improve tissue formation. This field is already providing new therapeutic options to bypass the limitati...
متن کاملSynthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures.
Scaffolding plays a pivotal role in tissue engineering. To mimic the architecture of a natural extracellular matrix component-collagen, nona-fibrous matrices have been created with synthetic biodegradable polymers in our laboratory using a phase-separation technique. To improve the cell seeding, distribution, mass transport, and new tissue organization, three-dimensional macroporous architectur...
متن کاملEngineering smooth muscle tissue with a predefined structure.
Nonwoven meshes of polyglycolic acid (PGA) fibers are attractive synthetic extracellular matrices (ECMs) for tissue engineering and have been used to engineer many types of tissues. However, these synthetic ECMs lack structural stability and often cannot maintain their original structure during tissue development. This makes it difficult to design an engineered tissue with a predefined configur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in biotechnology
دوره 16 5 شماره
صفحات -
تاریخ انتشار 1998